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Opioid addiction has devastating health and socio-economic consequences, and current pharmacotherapy is limited and often
accompanied by side effects, thus novel treatment is warranted. Traditionally, the neurohypophyseal peptide oxytocin (OT) is
known for its effects on mediating reward, social affiliation and bonding, stress and learning and memory. There is now strong
evidence that OT is a possible candidate for the treatment of drug addiction and depression-addiction co-morbidities. This review
summarizes and critically discusses the preclinical evidence surrounding the consequences of pharmacological manipulation of
the oxytocinergic system on opioid addiction-related processes, as well as the effects of opioids on the OT system at different
stages of the addiction cycle. The mechanisms underlying the effects of OT on opioid addiction, including OT’ interaction with
the monoaminergic, glutamatergic, opioidergic systems and its effect on the amygdala, the hypothalamic–pituitary–adrenal axis
and on memory consolidation of traumatic memories, are also reviewed. We also review clinical evidence on the effects of
intranasal OT administration on opioid-dependent individuals and discuss the therapeutic potential along with the limitations
that accompany OT-based pharmacotherapies. Review of these studies clearly indicates that the OT system is profoundly affected
by opioid use and abstinence and points towards the OT system as an important target for developing pharmacotherapies for the
treatment of opioid addiction and co-existing affective disorders, thereby preventing relapse. Therefore, there is a clear need for
clinical studies assessing the efficacy of OT-based pharmacotherapies in opioid addiction.
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The oxytocin system
Oxytocin (OT), a nine amino acid peptide, was discovered by
Sir Henry Dale in 1906 (Dale, 1906) and was the first peptide
hormone to be sequenced and synthesized by Du Vigneaud
(Du Vigneaud et al., 1953; Tuppy, 1953;Du Vigneaud et al.,
1954). OT is synthesized in the supraoptic (SON) and
paraventricular (PVN) nuclei of the hypothalamus. Besides
the well-described peripheral function of OT to stimulate
uterine contraction and milk ejection, its role as a
neurotransmitter and neuromodulator in the brain has
recently received increasing attention. OT-producing
neurons located in the hypothalamus innervate brain regions
associated with stress, reward, mood, fear, emotionality and
drug-seeking behaviour, such as the amygdala, septum,
nucleus accumbens and the bed nucleus of stria terminalis,
where OT receptors are expressed (see Gimpl and Fahrenholz,
2001). Following release from nerve terminals, OT binds to
OT receptors, but also to vasopressin receptors, as the latter
exhibit >85% homology with OT receptors (Busnelli et al.,
2013). The OT receptors are G protein-coupled receptors
(GPCRs) (Kimura et al., 1992), but the molecular mechanism(s)
of receptor activation and the intracellular signalling events
following receptor activation are only partly understood.
Activation of the central OT receptors is involved in the
modulation of several behaviours including autonomic
function, social, sexual, pair-bonding, maternal, anxiety-,
depressive- and psychotic-like behaviours (see Gimpl and
Fahrenholz, 2001; Hashimoto et al., 2012). Recent advances in
the field, both from preclinical and clinical studies, have
revealed the potential of OT as a possible therapeutic target
for the treatment of mental disorders characterized by social
dysfunction such as autism, social anxiety disorders,
depression, borderline personality disorders and schizophrenia
(see Meyer-Lindenberg et al., 2011).

Based on the key role of OT in social reward and stress
regulation, there has been significant interest in the role of
OT in addiction. The present review focuses on new and
old, preclinical and clinical evidence, suggesting a central
involvement of the oxytocinergic system in opioid addiction
and addictive-related behaviours and discusses the potential
of OT-based pharmacotherapies for the treatment of opioid
addiction and prevention of relapse. Underlying

neurobiological mechanisms and limitations of OT use as a
pharmacotherapeutic agent are also discussed.

Oxytocin and the reward system
Increasing interest in the involvement of the oxytocinergic
system in drug addiction came from findings suggesting that
the brain systems involved in drug reward interact with those
involved in natural rewards, such as sexual behaviour and
social bonding. Early findings from Carmichael et al. (1987)
outlined the ability of sexual self-stimulation (mediated by
the mesolimbic dopaminergic system) to increase plasma
OT levels in humans. These findings were recently replicated
by de Jong et al. (2015), who showed enhanced salivary OT
concentrations due to sexual self-stimulation. Preclinical
findings also showed that partner bonds of prairie voles (a
well-characterized monogamous species) are greatly
influenced and regulated by the OT neurotransmission in
the brain (Insel and Shapiro, 1992; Insel et al., 1994; Young,
2003). Oxytocinergic interactions with the dopaminergic
system in the brain were shown to underlie this pair bonding
(Liu and Wang, 2003), indicating possible association
between the oxytocinergic and dopaminergic systems to
regulate behaviour. Kovacs et al. (1990) showed that both
central and peripheral administration of OT acutely increases
dopamine utilization within the nucleus accumbens, while
chronic systemic administration of OT decreases dopamine
utilization within the basal forebrain of mice (Kovacs et al.,
1986).

These interactions of the oxytocinergic with the
dopaminergic system suggest that OT might have a critical
role in the treatment of several dopamine-related disorders
including drug addiction, and its beneficial effects might
in fact be mediated by its interactions with several
dopaminergic pathways in the brain.

Drug addiction cycle
Addiction is often characterized as a cycle of neurochemical
and psychological changes that bring about a shift from an
impulsive use of a drug to the compulsive use (see Koob
and Le Moal, 2008). Acute administration of drugs of abuse
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activates the mesolimbic dopaminergic reward pathway in
the brain, thus inducing hedonic effects that positively
reinforce the user to repeat drug administration. Upon
repeated use of the drug, neuroadaptive tolerance to the
rewarding effects of the drug is developed and an escalation
of the dose is needed in order to achieve the same initial
pleasurable effects (see Koob and Le Moal, 2001). During
this period, positive reinforcement associated with acute
drug administration is gradually replaced with a negative
reinforcement, where the drug is taken to prevent the
emergence of a negative withdrawal syndrome upon drug
cessation. Acute withdrawal from drug use causes aversive
drug-specific physical symptoms that are usually short-
lived, and for some drugs of abuse, including opioids,
protracted withdrawal could cause long-term emotional
impairment (see below). In fact, drug users who have
abstained from drug administration over a long period of
time are still vulnerable to relapse to drug-seeking,
particularly during re-exposure to the drug itself, to drug-
associated environmental cues or following stress (see Koob
and Le Moal, 2008).

Comorbid drug addiction and mood
disorders
Chronic exposure to drugs of abuse, as well as prolonged
abstinence from these drugs, is associated with lowered
mood, increased anxiety, irritability and social withdrawal
and isolation. It has been estimated that 45% of the drug-
dependent population has a comorbid psychiatric disorder,
compared with 12% of the non-dependent population
(Farrell et al., 2003). More specifically, according to
epidemiological studies, there is a marked comorbidity
(50–60%) between drug addiction and depression (Guest
and Holland, 2011), which is a major issue in psychiatry
as it is accompanied by more severe symptoms, longer
illness duration, higher service utilization and higher
relapse rates (Kosten et al., 1986; Alterman et al., 1996;
Brooner et al., 1997). Therefore, considering that
antidepressants (see Riggs, 2003) and current addiction
pharmacotherapies (see Kampman et al., 2005) have
limited efficacy and are frequently accompanied by side
effects in people suffering from this comorbidity,
understanding the neurobiological mechanisms underlying
comorbid depression and addiction disorders will have
important therapeutic implications in improving mental
health care.

Effects of opioid addiction on the
oxytocinergic system
The effects of opioid addiction on the oxytocinergic system
and the effect of OT treatment in modulating addiction-
related behaviours are summarized in Tables 1 and 2
respectively.

Acute opioid administration
Studies showing a clear role of the oxytocinergic system in
the acute reinforcing effects of the opiate morphine were

among the first evidence pointing towards the involvement
of OT in drug addiction. In particular, acute morphine
administration was shown to decrease hypothalamic OT
release in female rodents (Clarke et al., 1979; Haldar and
Sawyer, 1978). However, Kovacs et al. (1987a) observed
increased OT immunoreactivity in extra-hypothalamic
regions including the hippocampus, amygdala and basal
forebrain of male mice, suggesting either differential
effects of acute opioid administration on OT
neurotransmission in different areas of the brain or a sex-
dependent regulation of the oxytocinergic system upon
an acute challenge with opioids.

Chronic opioid administration
Chronic administration of morphine induced a significant
decrease in OT immunoreactivity in the hippocampus,
decreased OT mRNA levels within the SON, median
eminence and arcuate nucleus of the hypothalamus (ARC)
and reduced brain OT synthesis and plasma OT levels (Kovacs
et al., 1987a; Laorden et al., 1998; You et al., 2000; Zanos et al.,
2014a). This general down-regulation of the oxytocinergic
system following chronic opioid administration, in
comparison with the acute stimulatory effects of opioid
administration in different brain regions, may be a result of
several neuroadaptive changes in the oxytocinergic system
caused by chronic exposure to opioids. We showed that this
hypo-oxytocinergic tone following chronic administration
of opioids is linked with a marked increase in OT receptor
binding within the olfactory nuclei and amygdala of mice
(Zanos et al., 2014a). This effect might comprise a
neuroadaptive/compensatory mechanism to counteract the
decreased oxytocinergic signalling in the brain. Increased
OT receptor binding in the brain following chronic opioid
administration might also indicate a hypersensitivity of the
oxytocinergic system during this period and should be taken
into consideration when choosing the right OT dosing
regimen. In fact, while acute administration of low doses of
OT lacks deleterious side effects in humans (see MacDonald
et al., 2011), there is uncertainty on the effects of chronic
administration of OT at both low and higher doses.
Importantly, Peters et al. (2014) demonstrated that chronic
(15 day) intracerebroventricular (i.c.v.) infusion of OT, at a
high dose (10 ng·h�1), induced a paradoxical anxiogenic
phenotype in mice. This is particularly important in the case
of opioid addiction, where the OT receptor system may be
more sensitive based on findings from Zanos et al. (2014a)
showing an up-regulation of OT receptors in an animalmodel
of chronic opioid use. Therefore, high doses of OT could be
proven deleterious and even worsen the treatment prognosis
in this population. Nonetheless, chronic administration of
low doses of OT (1 ng·h�1; 19 days; i.c.v.) prevented
psychosocial stress-induced anxiety (Peters et al., 2014),
indicating a dose-dependent effect of OT. These findings
highlight that it may be important for future clinical studies
assessing the effects of OT on opioid-dependent individuals,
to use low doses of OT, in order to avoid potential undesirable
side effects.

Opioid conditioning/self-administration
Interestingly and in contrast with the hypothesis that OT
might be a potential target for the treatment of drug
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addiction, central administration of OT did not prevent the
acquisition of morphine-conditioning and it even increased
the expression of morphine place-preference when it was
administered prior to the post-conditioning test in a
conditioned place-preference (CPP) study in rats (Moaddab
et al., 2015). In line with this finding, Van Ree and De Wied
(1977) showed that peripherally administered OT slightly
facilitated heroin self-administration in rats. These
paradoxical effects of OT might be related to the direct
actions of OT stimulation on the dopaminergic system (see
Section ‘Oxytocin and the reward system’). The fact that
activation of the central OT receptors directly increases
striatal dopaminergic content (Georgiou et al., 2015b) and
OT facilitates the effects of dopamine (Insel, 2003), which is
directly involved in the reinforcing properties of the drugs
of abuse (Volkow et al., 2006; Wong et al., 2006), indicates
that OT administration might cause an enhanced
morphine-induced CPP and/or heroin self-administration
via mimicking and thus augmenting the hedonic effects
of morphine. Indeed, similar to morphine (Lintas et al.,
2011), OT administration was shown to increase the firing
rate of accumbal neurons (Moaddab et al., 2015), indicating
that there might be a possible additive effect of morphine
and OT on the hyperexcitability of the mesolimbic
dopaminergic neurons, which might have driven the
enhanced morphine-induced conditioning. However, the
choice of OT dose seems to be critical in determining the
beneficial effects of the drug. Indeed, in the morphine
CPP study (Moaddab et al., 2015), the authors used a dose
of 0.2 μg (i.c.v.), whereas Ibragimov et al. (1987) using a
dose of 0.2 ng microinjected into the nucleus accumbens
or ventral hippocampus demonstrated that OT was able to
abolish heroin self-administration in heroin-dependent
rats, an effect that was prevented by OT receptor blockade.
These controversies highlight the importance for choosing
the correct dose for OT to exert its beneficial effect,
especially as OT is known to also bind to vasopressin
receptors at higher doses (Busnelli et al., 2013), which could
cause the exactly opposite behavioural effects (Neumann
and Landgraf, 2012). In support of this, Peters et al.
(2014) showed dose-dependent differential effects of
chronic central administration of OT on anxiety, stress-
related behaviours and OT receptor binding in different
brain regions.

Opioid tolerance
OT was also shown to modulate short- and long-term opioid
tolerance. In particular, both peripheral and central OT
administration dose-dependently attenuated the
development of analgesic morphine and heroin tolerance in
rodents, and a single OT injection also blocked the expression
of heroin tolerance following repeated heroin administration
(Kovacs et al., 1985b; Kovacs et al., 1984; Kovacs et al., 1998;
Kovacs and Telegdy, 1987). These results strongly suggest that
OT can rapidly modulate both the early development, as well
as the expression of an already developed opioid tolerance.
Interestingly, OT treatment reduced heroin self-
administration in heroin-tolerant (Kovacs et al., 1985a), but
not in non-tolerant rats (Kovacs et al., 1998), although it
inhibited the development of tolerance tomorphine-induced
hyper-locomotion inmice (Kovacs and Telegdy, 1987), which

might indicate differential effect of OT on the adaptive versus
acute opioid tolerance processes. Importantly, the lateral
septum was shown to mediate the inhibitory effect of OT on
heroin self-administration as direct microinjection of OT
within this brain region abolished heroin self-administration
in heroin-tolerant rats (Ibragimov and Kovacs, 1987). While
the effect of OT on reducing opioid tolerance may be
desirable in increasing the therapeutic efficacy of opioid
replacement therapy, it may also be dangerous as it could lead
to opioid toxicity in patients receiving opioid replacement
therapy, especially in cases of accidental opioid overdose. In
addition, if tolerance to the respiratory depressant effects of
opioids is also reduced byOT, this effect could lead to a higher
risk of opioid overdose, which has been also suggested to be
the case with the effects of ethanol on tolerance to the
respiratory depressant effects of opioids (Hill et al., 2016).

Opioid withdrawal/relapse
The first evidence for a role of OT on the regulation of opioid
withdrawal came from Kovacs et al. (1985c) who showed that
peripheral OT administration decreases naloxone-
precipitated morphine withdrawal symptoms in rodents. To
unravel the mechanism underlying the inhibitory effect of
OT on opioid withdrawal symptoms, later studies
investigated the effect of pharmacologically induced opioid
withdrawal on OT neurotransmission. In particular, Bicknell
et al. (1988) demonstrated that naloxone-precipitated
morphine withdrawal, a protocol that is widely used to
precipitate acute physical opioid withdrawal symptoms,
increases plasma OT levels, as well as the firing rate of
oxytocinergic neurons in the SON of chronically morphine-
treated, lactating rats. Additionally, naloxone administration
also produced a large increase in OT levels within the CSF of
opioid-dependent rats (Coombes et al., 1991). Finally,
naloxone-precipitated morphine withdrawal increased
expression of Fos protein within the SON (Murphy et al.,
1997; Johnstone et al., 2000) and OT mRNA levels within
the median eminence and PVN (Laorden et al., 1998), which
may illustrate an increase in the biosynthesis of OT. These
findings are somewhat unexpected as OT treatment prevents
naloxone-precipitated withdrawal symptoms at a time when
OT neurotransmission is already enhanced. Taken together,
these results might indicate a possible OT receptor-
independent mechanism of action of exogenously
administered OT on the regulation of opioid withdrawal
physical symptoms. Indeed, it has been demonstrated that
OTmight exert an OT receptor-independent action at GABAA

receptor δ subunits, to regulated addiction-related processes
(Bowen et al., 2015).

In contrast to the pharmacologically induced morphine
withdrawal findings, recent studies have demonstrated a
differential regulation of the oxytocinergic system following
non-precipitated, long-term spontaneous withdrawal from
opioid treatment in mice. Zanos et al. (2014a) found
decreased hypothalamic OT levels and increased OT receptor
binding in the olfactory nuclei, piriform cortex, septum and
amygdala following spontaneous (non-precipitated)
withdrawal from chronic escalating-dose morphine
administration in mice. These neuroadaptive alterations of
the oxytocinergic system were concomitant with the
emergence of emotional deficits including depressive-,
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anxiety-like behaviours and social impairment, at least in an
animal model. We also demonstrated that carbetocin, an
OT analogue, was able to prevent morphine withdrawal-
induced emotional impairment, as well as stress- and
priming-induced reinstatement of morphine conditioned
preference in mice (Zanos et al., 2014a; Georgiou et al.,
2015b). These findings demonstrate the ability of OT
treatment to reduce the physical and emotional symptoms
of opioid abstinence, suggesting a promising
pharmacotherapy for comorbid mood and substance abuse
disorders, as well as relapse prevention, thus warranting a
clinical investigation in opioid abusers and abstinent
individuals undergoing detoxification.

Mechanisms underlying the effect of OTon
opioid addiction
The mechanism/s by which OT exerts its effect on drug-
related behaviours are complex and not fully understood.
Here, we outline some of the main suggested mechanisms
based on preclinical and clinical evidence.

Interactions with the monoaminergic system
Dopamine. The most characterized link between the
oxytocinergic and the dopaminergic systems stems from the
fact that OT-mediated social affiliative behaviours are also
linked to key alterations in the dopaminergic reward system
(Young and Wang, 2004; Skuse and Gallagher, 2009). OT is
known to modulate dopamine turnover, and OT receptors
have been shown to functionally interact with the
dopamine D2 receptors in the nucleus accumbens (Romero-
Fernandez et al., 2012). Thus, it is perhaps not surprising
that the dopaminergic system is involved in the
mechanism(s) underlying the effect of OT in modulating
addictive-related behaviours. For instance, Qi et al. (2008)
demonstrated that OT administration prevents
methamphetamine-induced hyperlocomotion via
decreasing methamphetamine-associated reduction on
dopamine turnover in the mesolimbic system of the brain.
In addition, intra-prefrontal cortex administration of OT
prevented amphetamine-induced impairment of pair-bond
formation, via blocking amphetamine-induced increases in
dopamine levels in the nucleus accumbens (Young et al.,
2014). With regards to opioid addiction, Georgiou et al.
(2015b) showed that administration of the OT analogue
carbetocin increases dopamine turnover in the striatum of
mice, which was associated with the ability of the drug to
prevent both priming- and stress-induced reinstatement to
opioid CPP.

Noradrenaline. Some preliminary evidence for an
interaction between the oxytocinergic and noradrenergic
systems exists. OT administration enhances noradrenaline
release in the SON nucleus of the hypothalamus, which
then activates hypothalamic OT neurons (Onaka et al.,
2003). Importantly, we have recently shown that the
prevention of morphine primed-reinstatement of opioid-
seeking behaviour following administration of OT is directly
associated with the ability of OT to suppress striatal
noradrenaline turnover in mice (Georgiou et al., 2015b),
thus suggesting the presence of a noradrenergic mechanism

underlying the beneficial effect of OT on opioid relapse
prevention. Nonetheless, this was not the case with stress-
induced reinstatement indicating differential regulation of
OT-noradrenaline interactions in mediating diverse
reinstatement triggers.

5-HT (serotonin). Preliminary data suggest possible
interactions between the oxytocinergic and serotonergic
systems, which might be implicated in the modulation of
several neuropsychiatric disorders. For example,
serotonergic terminals originating from the dorsal and
median raphe nuclei were shown to project to the PVN
magnocellular neurons (Sawchenko et al., 1983; Larsen
et al., 1996), where they possibly regulate OT release via
an interaction with the 5-HT receptors (Jorgensen et al.,
2003; Ho et al., 2007). In addition, administration of a 5-
HT receptor agonist to healthy individuals increased
plasma OT levels (Lee et al., 2003). Although the
involvement of the serotonergic system in the mechanisms
underlying the effects of OT on opioid addiction-related
behaviours has not been investigated to date, it is
important to pursue research aiming to understand
whether OT-based pharmacotherapies, via interacting with
the serotonergic system, are effective in treating opioid
addiction-mood disorder comorbidities, considering the
evidence that serotonin reuptake inhibitor antidepressant
drugs, such as citalopram and fluvoxamine, may exert
their antidepressant effects partly via interacting with the
oxytocinergic system (Uvnas-Moberg et al., 1999; Swaab
et al., 2000; de Jong et al., 2007).

Interactions with the glutamatergic system. While the role of
glutamatergic neurotransmission in opioid addiction has
not yet been identified, there is evidence to suggest a key
involvement of the glutamatergic system in the
pharmacological effects of OT on modulating addictive-
related behaviours. In particular, Qi et al. (2009) showed
that OT treatment abolished stress-induced, but not
methamphetamine-priming, increases in glutamate levels in
the medial prefrontal cortex of mice undergoing
reinstatement of methamphetamine CPP. Interestingly, this
effect was associated with the ability of OT to prevent stress-
induced, but not drug-primed, reinstatement to
methamphetamine place-preference.

Role of the amygdala. Intranasal OT has been shown to
decrease anxiety via reducing amygdala reactivity in
response to threat (Kirsch et al., 2005; Domes et al., 2007;
Baumgartner et al., 2008; Labuschagne et al., 2010). As there
is high comorbidity between drug addiction and anxiety
disorders, it is plausible that OT may act within this precise
brain network to induce its restorative effect on recovering
emotional impairment in drug-dependent individuals.
Indeed, we have shown that chronic administration of
morphine (Zanos et al., 2014a), cocaine (Georgiou et al.,
2015a; Georgiou et al., 2016b), methamphetamine (Zanos
et al., 2014b; Georgiou et al., 2016a) and nicotine (Zanos
et al., 2015) induces an up-regulation of the OT receptor
binding in the amygdala of mice, indicating a possible
common neuroadaptation of the oxytocinergic system in
response to different classes of drugs of abuse. Although the
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exact mechanisms underlying these neuroadaptations need
further investigation, it is likely that these changes of the
OT receptor system in the amygdala are involved in the
modulation of drug/emotional impairment comorbidity.
Given the anxiolytic, antidepressant and social-enhancing
effects of OT administration on humans when administered
via an intranasal spray (Kirsch et al., 2005; Baumgartner
et al., 2008; Di Simplicio et al., 2009) or on animal models
when administered centrally or peripherally (Windle et al.,
2004; Dabrowska et al., 2011), this dysregulation (up-
regulation) of the OT receptor system in the amygdala may
constitute a common neurobiological mechanism to
counteract the negative emotional state induced by chronic
drug administration. Therefore, the use of an OT-based
pharmacotherapy to preferably jump-start the amygdala to
attenuate emotional distress, including anxiety, and activate
stress-coping mechanisms could be an important area for
research and further our understanding of the role of the
oxytocinergic system in the amygdala, in controlling
substance abuse.

Hypothalamic–pituitary–adrenal (HPA) axis activity. There is
evidence to support a regulatory role of the HPA axis on the
anxiolytic and antidepressant effects of OT. Specifically, i.c.
v. administration of OT decreased stress-induced
corticosterone release in rats (Windle et al., 1997).
Moreover, intra-PVN administration of an OT receptor
antagonist increased basal adenocorticotropic hormone
(ACTH) levels, while it reduced ACTH release in response to a
forced-swim stress in male rats (Neumann et al., 2000a, b).
These findings indicate a possible tonic inhibition of the HPA
axis by OT and an enhancing action under stress conditions.
With regards to opioid addiction, we have shown that the
effect of carbetocin on preventing stress- (Zanos et al., 2014a)
and priming-induced (Georgiou et al., 2015b) reinstatement of
morphine-seeking does not depend on changes in activity of
the HPA axis, as we did not observe any effects of carbetocin
on plasma corticosterone levels following either priming- or
stress-induced reinstatement in mice. However, the effects of
OT or OT-based drug administration on the central
corticotropin-releasing factor (CRF) system cannot be
precluded since there is evidence for a direct regulation of the
CRF neurotransmission by OT (Bulbul et al., 2011; Jurek et al.,
2015; Pati et al., 2015).

Extinction of traumatic memories. Although not tested in the
context of drug addiction, there is compelling evidence to
suggest that OT facilitates extinction of memories associated
with fear. For instance, i.c.v. administration of OT prior to
fear conditioning does not appear to have any effect on fear
learning; however, later fear extinction is facilitated by OT,
while OT receptor antagonists administration impairs
extinction learning and retrieval (Singewald et al., 2015).
Therefore, it is conceivable that OT may be able to alleviate
the affective emotional consequences of drug addiction and
prevent relapse by interfering with the consolidation of fear
memories, making these memories weaker and more
susceptible to extinction (Singewald et al., 2015). This
hypothesis warrants further exploration.

Interactions with the endogenous opioid system. Opioid
peptide regulation of the OT system has been suggested to
at least partly underlie the effects of opioid drugs on the OT
system. In fact, opioid peptide neuronal fibres and terminals
are located in close proximity with OT neurons within the
hypothalamus (Bicknell et al., 1988). Moreover, μ-opioid
receptors are highly expressed in the hypothalamus, and
particularly within the SON and PVN nuclei, where
oxytocinergic neurons project from (Atweh and Kuhar,
1983). These studies indicate possible interactions between
the opioid and oxytocinergic systems. Indeed, it was
recently demonstrated with the use of receptor
autoradiographic binding in μ receptor knockout mice, the
presence of brain region-specific interactions between the μ
receptor and OT receptor systems (Gigliucci et al., 2014;
Georgiou et al., 2015b), which may be involved in the
effects of OT on the modulation of opioid-associated
behaviours discussed in this review. Furthermore, a
remarkable decrease in OT gene expression was observed in
the nucleus accumbens of mice lacking the μ receptor gene
(Becker et al., 2014), further supporting a close interaction
between the opioidergic and oxytocinergic systems.

OT as a potential pharmacotherapy for opioid
addiction: from bench to bedside
Clinical studies. There is currently a limited number of
clinical trials investigating the efficacy of OT in the
treatment of drug addiction. With regards to opioid
addiction, there have been only two clinical studies to-date
that assessed the effects of intranasal OT on opioid-
dependent patients (Stauffer et al., 2016; Woolley et al.,
2016). The main outcome of both studies demonstrates a
safe and good tolerability profile of OT administration in
opioid-dependent individuals, even after repeated
administration for 2 weeks. In a randomized, double-blind,
placebo-controlled, crossover study, Woolley et al. (2016)
reported that intranasal OT administration (40 IU) did not
improve cue-induced craving in opioid-dependent subjects
receiving opioid replacement therapy. In contrast, in a
placebo-controlled trial of individuals undergoing
methadone replacement treatment for opioid and co-
occurring cocaine use disorder, placebo-treated patients
reported an increase for heroin craving, while individuals
who received intranasal OT treatment (40 IU; two times
daily × 2 weeks) did not exhibit increased craving response
(Stauffer et al., 2016), providing some promise for the
treatment of this population. No evidence of a reduction of
opioid tolerance following OT administration was observed
in these trials. This is especially important considering the
findings of OT-induced opioid tolerance observed in
animals, which could have potentially led to fatal overdose

Therapeutic potential of OT in opioid addiction treatment and
addiction-emotional impairment comorbidities. In light of the
literature reviewed here, OT has unambiguously a key role
in mediating several opioid addiction-related behavioural
and neurochemical processes and can be considered a
promising target for the treatment of opioid dependence
and emotional impairment comorbidity. One important
factor that distinguishes OT from currently available
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medications is that it does not show abuse or addiction
potential. In fact, the doses used in the preclinical studies,
which revealed that OT induces CPP, are much higher than
the doses used in the clinical trials (Liberzon et al., 1997).
Evidence also suggests that patients treated with OT could
not discriminate between placebo or the actual drug
(MacDonald et al., 2011), further supporting the lack of
rewarding properties of OT at least at doses ranging from 18
- 40 IU. However, future studies should assess the possibility
of any rewarding effects following chronic administration of
OT in humans.

Another unique property of OT that is particularly
important for the treatment of opioid addiction and/or
comorbid mood disorders is related to its prosocial effects
(Churchland andWinkielman, 2012). Prolonged use of drugs
of abuse results in disintegration of the social lives of drug
addicts and may lead to social isolation and poor decision-
making in their social domain at the expense of compulsive
pre-occupation with the drug and its related cues (Dawe
et al., 2009; Volkow et al., 2011). Impaired social behaviours
have been linked with the propensity of addicts to relapse
after long-term abstinence (Tokar et al., 1975). Therefore,
considering the therapeutic effects of social support programs
(e.g. Alcoholics Anonymous, Narcotics Anonymous) and the
benefits of social rehabilitation and social reintegration in
keeping addicts abstinent from the drug (Koerner, 2010;
McGregor and Bowen, 2012), the current findings for the
pro-social effects of OT may suggest its use as an adjunct to
cognitive behavioural therapy as a novel effective ‘psycho-
biological therapy’ for the prevention of relapse to drug-
seeking. In support of this, OT and social support have been
shown to interact and exert a stress-buffering effect following
a psychosocial stress challenge in humans (Heinrichs et al.,
2003). Moreover, there is clinical evidence for a beneficial role
of OT in the treatment of other disorders characterized by
social cognitive impairment including autistic spectrum
disorders and schizophrenia (Carter, 2007; Heinrichs and
Gaab, 2007).

Limitations. One concern for studies looking at effects of
exogenously administered OT is that it has a very short
plasma (3–5 min) and central (30 min) half-life (Uvnas-
Moberg, 1998; Ludwig and Leng, 2006). However, intranasal
administration of OT has been shown to induce more
prolonged release of at least 80 min (Burri et al., 2008) and
has extended biological (endocrine and sexual) activity,
even after a single dose in humans (Uvanas-Moberg et al.,
2005). Intranasally administered OT has been shown to
cross the blood-brain barrier and to exert central effects
(Born et al., 2002; Chang et al., 2012; Pedersen et al., 2013).
Nonetheless, the development of smaller non-peptide OT
agonists with high specificity for central OT receptors is
undoubtedly desirable.

Although the outcome from the many clinical trials using
intranasal OT treatment points towards a safe profile of the
drug (MacDonald et al., 2011), there are some unanswered
questions related to its safety following chronic use in drug-
dependent individuals. In fact, high doses of intravenous
OT have been associated with cardiovascular side effects
including hypotension and myocardial ischaemia (Dyer
et al., 2011) or electrolyte imbalances due to its structural

similarity to arginine vasopressin and its effects on the
kidneys (Rasmussen et al., 2004). Importantly, OT
administration at high doses could also activate the
vasopressin V1A receptors in the brain, which may actually
lead to opposing behavioural responses (Neumann and
Landgraf, 2012). Concerns also include the safety of OT
administration in females at different reproductive phases
due to the peripheral effects of OT (i.e. milk ejection, labour
induction), as well as the regulation of OT by the gonadal
hormones (Zhang et al., 1991; McCarthy, 1995).

Moreover, caution needs to be applied when choosing the
dose of OT for chronic intranasal administration. Peters et al.
(2014) showed that chronic i.c.v. infusion of OT (15 days) at a
high dose (10 ng·h�1) induced an anxiogenic phenotype
whereas low doses of OT(1 ng·h�1 for 19 days) prevented
psychological stress-induced hyper-anxiety in rats. These
findings highlight the need for a deeper understanding of
chronic treatment and dose-dependent effects of OT before
we consider OT for long-term therapeutic use for the
treatment of psychiatric conditions such as addiction.

Concluding remarks
Preclinical and clinical evidence clearly indicates the
potential of OT as an effective next-generation treatment
(possibly as an ad hoc medication) for opioid addiction and
comorbid mood disorders, as well as prevention of relapse.
Therefore, there is a need for future clinical studies to directly
assess the effect of OT-based pharmacotherapies on the
different stages of opioid addiction and to determine doses
that would avoid any detrimental side effects.
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